Induction of DNA replication in adult rat neurons by deregulation of the retinoblastoma/E2F G1 cell cycle pathway.

نویسندگان

  • D S Smith
  • G Leone
  • J DeGregori
  • M N Ahmed
  • M B Qumsiyeh
  • J R Nevins
چکیده

In adult organisms, a range of proliferative capacities are exhibited by different cell types. Stem cell populations in many tissues readily enter the cell cycle when presented with serum growth factors or other proliferative cues, whereas "terminally" postmitotic cells, such as cardiac myocytes and neurons, fail to do so. Although they rarely show evidence of a proliferative capacity in vivo, there is accumulating evidence to suggest that DNA synthesis can be triggered in postmitotic cells. We now show that cultured adult rat sensory neurons can replicate DNA in response to ectopic expression of E2F1 or E2F2 and that this is augmented by expression of cyclin-dependent kinase activities. We also find that addition of serum and laminin inhibits the E2F-induced S-phase in neurons but not in nonneuronal cells in the same cultures. We conclude that, although terminally differentiated neurons possess the capacity to reinitiate DNA replication in response to G1 regulatory activities, they fail to do so in the presence of signals that do not inhibit S-phase in other cell types in the same cultures. This suggests the existence of cell type-specific inhibitory pathways induced by these signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of transcription factor E2F in regulation of DNA replication.

The transcription factor E2F plays crucial roles in induction of S phase in mammalian cells by regulating the expression of genes that encode molecules involved in cell cycle progression. E2F exerts a repressive effect on E2F-responsive genes in G0/G1 phase by associating with the retinoblastoma tumor suppressor gene product pRb and the related protein p130. This repression is relieved by phosp...

متن کامل

Identification of target genes of the p16INK4A-pRB-E2F pathway.

Deregulation of the retinoblastoma protein (pRB) pathway is a hallmark of human cancer. The core members of this pathway include the tumor suppressor protein, pRB, which through binding to a number of cellular proteins, most notably members of the E2F transcription factor family, regulates progression through the cell division cycle. With the aim of identifying transcriptional changes provoked ...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein.

The retinoblastoma protein, pRb, controls entry into the S phase of the cell cycle and acts as a tumor suppressor in many tissues. Re-introduction of pRb into tumor cells lacking this protein results in growth arrest, due in part to transcriptional repression of genes required for S phase. Several studies suggest that pRb may also be involved in terminal cell cycle exit as a result of the insti...

متن کامل

Interaction of the Retinoblastoma Protein with Orc1 and Its Recruitment to Human Origins of DNA Replication

BACKGROUND The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. METHODOLOGY/PRINCIPAL FINDINGS Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2000